Mathematics and Problem Solving Lecture 11.2

Hypothesis Testing

Starting with a question

- Often you'll come to data with a question:
 - "Do players prefer character A or character B?"

Hypotheses

- To answer this with statistics, you need to turn it into **two** hypotheses:
 - Null Hypothesis
 - Alternate Hypothesis

Null Hypothesis

- The null hypothesis says that
 - whatever results you got were the result of chance
 - i.e. nothing interesting is happening
- e.g. "Players like both characters more or less the same"

Alternate Hypothesis

- Your **alternate hypothesis** is what you're trying to prove
 - e.g. "Players either prefer Character A or they prefer character B"
 - This is the hypothesis that we're going to test

- Now, imagine we find the mean score for characters A and B to be 4.5 and 4.7
- Can we confirm our hypothesis?
 - No, because we only sampled our population, the difference might be chance
- Inferential statistics tell you how likely it is that the effect you observe is the result of chance.

- Instead, imagine we have the distributions of the results.
 - Now can we confirm our hypothesis?

Statistics

- Key values
 - Test statistic (varies)
 - p
 - α
 - Effect size (if possible)

Statistical Significance

- p = probability the effect observed was chance
 - p < α
 - statistically significant
 - p > α
 - not statistically significant

Alpha

- Alpha (α) is usually set at 0.05
- Reduced for multiple testing

Effect Size

- How big an effect is
 - e.g. Cohen's d
 - *d* = 0.2 is small
 - *d* = 0.5 is medium
 - *d* = 0.8 is large
- Important for interpreting results

Type I error

- Falsely rejecting the null hypothesis
 - we claim an effect when there is no effect
- If α = 0.05, we have a 5% chance of making a Type I error.

Type II error

- Falsely accepting the null hypothesis
 - there is an effect, but you don't detect it
- The probability of making a type II error is called beta (β)
 - This is related to your statistical **power**. (= $1-\beta$)
 - A good **power** is 0.8 (β = 0.2)

4.7

In closing

- Inferential statistics = lots of numbers about your data
- It's frighteningly easy to make mistakes
 - If that is in science that people rely on, that's a big problem