
Mathematics and Problem Solving
Lecture 9

Maths to Code

Overview
● Two Paradgims
● Bridging the Gap
● Functions
● Nuts and Bolts

● This might hurt a little
– There are no easy answers

– It’s about thinking in different ways

Two Paradigms

Programming
● What is programming?

Programming
● What is programming?

– Writing a sequence of instructions

– Designing an algorithm

– Controlling the flow of execution

Programming
● What is imperative programming?

– Writing a sequence of instructions

– Designing an algorithm

– Controlling the flow of execution

Maths
● What is maths?

– Declaring what is the case

– Defining relations between ideas

– Solving within constraints

The Conceptual Divide
● Programming is imperative*
● Maths is declarative

● Imagine trying to write a program to perfrom the process of
mathematics
– Detect when it can apply transformation rules

– Transform strings

– Infer patterns

– Find solutions within constraints

– Reason over this process to prove that some solutions don’t exist

● Imagine writing maths to describe a program
– Function: input output→

● Whole code
● Each method

– Sequnce of all variables
● [(a1,b1,c1), (a2,b2,c2), ... (an,bn,cn)]
● Function relating them

– Recursion

Maths
● Generalities
● Solving
● Proving
● Holistic
● Intuitive

Programming
● Instances
● Evaluating
● Testing
● Local
● Formal

Bridging the gap

Think like a school child
● We reason holistically and intuitively

– But only once we are familiar with patterns

● We are taught step-by-step instructions

+ =

● Work through the maths yourself with example
values

● What steps do you take?
– Each step is a line of code

– Create interim variables for clarity

– Add brackets for clarity

● Mean
– double meanOfX = mean(x)

● In the sum
– Difference

● double diff = x[i] – meanOfX

– Square
● double diff2 = diff * diff

● Sum
– for (int i=0;i<n;i++) { }

● Division
– double sSquared = Sum / n-1

● Square root
– double s = Math.sqrt(sSquared)

Make code more declarative
● We define things in code all the time

– double pi = 3.14;

– int add(int a, int b) { return a + b; }

– class Set

● Look for declarative ways to write your code

● What does it mean to define?
– X is something (is a)

● Or has a particular type

– X has something (has a)
● Or stores particular types of variables

Has a
● In OOP, we design classes
● Classes have certain properties

– Variables

– Methods

● All of this type information is declarative

● Variables, objects and functions have a name
– No operational effect

– Really important for understanding your code!

– Choose good descriptive names!

Is a
● When we ask what a thing is we’re asking about it’s type

– numerical?

– boolean?

– Array?

– Object? (ClassA, ClassB, ClassC, …)
● What does the class have?

– Function
● What are it’s arguments?
● What is it’s return type?

● OOP gives us powerful inheritence tools
– A class can extend another class

– A class can implement an interface

● Each class in a heirarchy defines some properties
– When a class Cat extends another class Animal, the Cat is a Animal
– Cat has the properties of an Animal
– ArrayList is a AbstractList is a AbstractCollection is an Object; and ArrayList

is a Serializable, Clonable, Iterable, Collection, List, RandomAccess

● Structure your code so that it’s
– Easy to do things that work

– Hard to do things that don’t work

● Explicit typing is your friend

Bridging the Gap
● Make your maths more imperative

– Think like a school child

● Make your code more declarative
– What is x? What does x have?

– Of functions: What arguments does x take? What sort of thing
does it return?

– What shall I call it?

Functions

● Not all programming langages are imperative
– Declarative Programming

● Program defines a problem domain
– Defines what the program should achieve

– Not how it achieves it

● Functional Programming
– Programs are constructed of functions, combining other

functions...

– Functions are first-class citizens
● You can pass them as arguments and return them from other functions

– You don’t have a state
● No variables to store and manipulate
● Lazy evaluation means that functions are evaluted when needed

● Make good use of functions
– They can be small

– Do a single well defined task

– Call other functions

– Be recursive

– You don’t need to store the value if you have a function to calculate it

● See if your programming langauge supports
– Delegates (e.g. C#)

– Callbacks (e.g. JS)

– (Not really supported in Java :()

● A function might be defined imperatively, but once it’s
written, it’s a magic box
– If it does a clearly defined job, you can treat it like a

mathematical function

● Ensure side-effects are always expected (and as
expected)
– Maths doesn’t have side-effects!

Good use of functions is the most important step
to making maths code more managable

Nuts and Bolts

Types
● Integers Integer Primatives→

– byte 8 bits -128 to +127

– short 16 bits -32,768 to +32,767

– int 32 bits -2 billion to +2 billion (approximately)

– long 64 bits -9x1018 to +9x1018 (approximately)

● Reals Floating Point Primatives→
– float 32 bits -3.4x1038 to +3.4x1038

– double 64 bits -1.7x10308 to 1.7x10308

● Beware: precision
– Treat floating point values as non-deterministic

● Arrays Arrays→
– X = [X1, …, Xn] int[]→

● Watch out for indexes
– Maths usually indexes from 1 n→
– Code usually indexes from 0 n-1→

● Mathematical objects such as
– Sets

– Tuples

– Graphs

you’ll probably need to create your own class

Operators
● a + b → a + b
● a - b → a - b
● a x b, ab, a.b a*b→
● a÷b, a/b→
● a mod b a % b→
● ab Math.pow(a,b)→
● log2 a Math.log(a)→

a
b

● Log to any base
●

int log(int a, int base)

{

 return log(a) / log(base);

}

● a b a && b∧ →
● a b a || b ∨ →
● ¬a !a→

And when this doesn’t work
● Ask: what is this formula achieving?

– Isolate the formula you can’t translate

– Think of the formula like a function f(x) ?→
● What does it depend on? (i.e. the inputs)
● What is it’s output?

– How can you write the same function a different way?
● Perhaps even as a function!

– eg. Summation for loop→

Elegance and Clarity
● Brackets

– There’s no harm doing ((a) + (b))

● Simplify
– Do only as many operations in one line that are easy to understand

– Interim variables

● Descriptive names
– Reading the name of a function in context should make it clear exactly what

it does

Takeaways
● Make maths more imperative
● Make code more declarative
● Make good use of functions
● Make sure you know what your types are
● Descriptively named, interim variables
● Translate each operator. When in doubt, add brackets

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

