
Mathematics and Problem Solving
Lecture 9

Maths to Code



  

Overview
● Two Paradgims
● Bridging the Gap
● Functions
● Nuts and Bolts



  

● This might hurt a little
– There are no easy answers

– It’s about thinking in different ways



  

Two Paradigms



  

Programming
● What is programming?



  

Programming
● What is programming?

– Writing a sequence of instructions

– Designing an algorithm

– Controlling the flow of execution



  

Programming
● What is imperative programming?

– Writing a sequence of instructions

– Designing an algorithm

– Controlling the flow of execution



  



  

Maths
● What is maths?

– Declaring what is the case

– Defining relations between ideas

– Solving within constraints



  



  

The Conceptual Divide
● Programming is imperative*
● Maths is declarative



  

● Imagine trying to write a program to perfrom the process of 
mathematics
– Detect when it can apply transformation rules

– Transform strings

– Infer patterns

– Find solutions within constraints

– Reason over this process to prove that some solutions don’t exist



  

● Imagine writing maths to describe a program
– Function: input  output→

● Whole code
● Each method

– Sequnce of all variables
● [(a1,b1,c1), (a2,b2,c2), ... (an,bn,cn)]
● Function relating them

– Recursion



  

Maths
● Generalities
● Solving
● Proving
● Holistic
● Intuitive

Programming
● Instances
● Evaluating
● Testing
● Local
● Formal



  

Bridging the gap



  

Think like a school child
● We reason holistically and intuitively

– But only once we are familiar with patterns

● We are taught step-by-step instructions

+ =



  

● Work through the maths yourself with example 
values

● What steps do you take?
– Each step is a line of code

– Create interim variables for clarity

– Add brackets for clarity



  



  

● Mean
– double meanOfX = mean(x)

● In the sum
– Difference

● double diff = x[i] – meanOfX 

– Square
● double diff2 = diff * diff 

● Sum
– for (int i=0;i<n;i++) { }

● Division
– double sSquared = Sum / n-1

● Square root
– double s = Math.sqrt(sSquared)



  

Make code more declarative
● We define things in code all the time

– double pi = 3.14;

– int add(int a, int b) { return a + b; }

– class Set

● Look for declarative ways to write your code



  

● What does it mean to define?
– X is something (is a)

● Or has a particular type

– X has something (has a)
● Or stores particular types of variables



  

Has a
● In OOP, we design classes
● Classes have certain properties

– Variables

– Methods

● All of this type information is declarative



  



  

● Variables, objects and functions have a name
– No operational effect

– Really important for understanding your code!

– Choose good descriptive names!



  

Is a
● When we ask what a thing is we’re asking about it’s type

– numerical?

– boolean?

– Array?

– Object? (ClassA, ClassB, ClassC, …)
● What does the class have?

– Function
● What are it’s arguments?
● What is it’s return type?



  

● OOP gives us powerful inheritence tools
– A class can extend another class

– A class can implement an interface

● Each class in a heirarchy defines some properties 
– When a class Cat extends another class Animal, the Cat is a Animal
– Cat has the properties of an Animal
– ArrayList is a AbstractList is a AbstractCollection is an Object; and ArrayList 

is a Serializable, Clonable, Iterable, Collection, List, RandomAccess



  



  

● Structure your code so that it’s
– Easy to do things that work

– Hard to do things that don’t work

● Explicit typing is your friend



  

Bridging the Gap
● Make your maths more imperative

– Think like a school child

● Make your code more declarative
– What is x? What does x have?

– Of functions: What arguments does x take? What sort of thing 
does it return?

– What shall I call it?



  

Functions



  

● Not all programming langages are imperative
– Declarative Programming

● Program defines a problem domain
– Defines what the program should achieve

– Not how it achieves it



  

● Functional Programming
– Programs are constructed of functions, combining other 

functions...

– Functions are first-class citizens
● You can pass them as arguments and return them from other functions

– You don’t have a state 
● No variables to store and manipulate
● Lazy evaluation means that functions are evaluted when needed



  

● Make good use of functions
– They can be small

– Do a single well defined task

– Call other functions

– Be recursive

– You don’t need to store the value if you have a function to calculate it

● See if your programming langauge supports
– Delegates (e.g. C#)

– Callbacks (e.g. JS)

– (Not really supported in Java :( )



  

● A function might be defined imperatively, but once it’s 
written, it’s a magic box
– If it does a clearly defined job, you can treat it like a 

mathematical function

● Ensure side-effects are always expected (and as 
expected)
– Maths doesn’t have side-effects!



  

Good use of functions is the most important step 
to making maths code more managable



  

Nuts and Bolts



  

Types
● Integers  Integer Primatives→

– byte 8 bits -128 to +127

– short 16 bits -32,768 to +32,767

– int 32 bits -2 billion to +2 billion (approximately)

– long 64 bits -9x1018 to +9x1018 (approximately)



  

● Reals  Floating Point Primatives→
– float 32 bits -3.4x1038 to +3.4x1038

– double 64 bits -1.7x10308 to 1.7x10308

● Beware: precision
– Treat floating point values as non-deterministic



  

● Arrays  Arrays→
– X = [X1, …, Xn]  int[]→

● Watch out for indexes
– Maths usually indexes from 1  n→
– Code usually indexes from 0  n-1→



  

● Mathematical objects such as
– Sets

– Tuples

– Graphs

you’ll probably need to create your own class



  

Operators
● a + b  → a + b 
● a - b  → a - b 
● a x b, ab, a.b  a*b→
● a÷b,       a/b→
● a mod b  a % b→
● ab   Math.pow(a,b)→
● log2 a  Math.log(a)→

a
b



  

● Log to any base
●

int log(int a, int base) 

{ 

    return log(a) / log(base); 

} 



  

● a  b  a && b∧ →
● a b  a || b ∨ →
● ¬a  !a→



  

And when this doesn’t work
● Ask: what is this formula achieving?

– Isolate the formula you can’t translate

– Think of the formula like a function f(x)  ?→
● What does it depend on? (i.e. the inputs)
● What is it’s output?

– How can you write the same function a different way?
● Perhaps even as a function!

– eg. Summation  for loop→



  

Elegance and Clarity
● Brackets

– There’s no harm doing ((a) + (b)) 

● Simplify
– Do only as many operations in one line that are easy to understand

– Interim variables

● Descriptive names
– Reading the name of a function in context should make it clear exactly what 

it does



  

Takeaways
● Make maths more imperative
● Make code more declarative
● Make good use of functions
● Make sure you know what your types are
● Descriptively named, interim variables
● Translate each operator. When in doubt, add brackets
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