Mathematics and Problem Solving Lecture 8.3

Proof by Contradiction

Proof by Contradiction

• Assume our conjecture is false and show this leads to contradiction

- **Claim:** The tallest person in the world is taller than me (and I am not the tallest person)
- "Proof": Assume the tallest person in the world is *not* taller than me
 - Thus I would be taller than the tallest person.
 - Thus I would be both the tallest person and not the tallest person
 - Therefore by assuming the tallest person in the world is not taller than me, we conclude by contradiction that the tallest person is taller than me.

- **Claim:** The tallest person in the world is taller than me (and I am not the tallest person)
- "Proof": Assume the tallest person in the world is not taller than me
 - Thus I would be taller than the tallest person.
 - Thus I would be both the tallest person and not the tallest person
 - Therefore by assuming the tallest person in the world is not taller than me, we conclude by contradiction that the tallest person is taller than me.

- **Claim:** The tallest person in the world is taller than me (and I am not the tallest person)
- **"Proof":** Assume the tallest person in the world is *not* taller than me
 - Thus I would be taller than the tallest person.
 - Thus I would be **both** the tallest person **and** not the tallest person
 - Therefore we conclude by contradiction that the tallest person is taller than me. ■

Contradiction in Propositional Logic

- Contradiction, e.g. $P \land \neg P$ is equivalent to false
- If $P \rightarrow false$
- Then P must be false

- **Theorem:** sqrt(2) is irrational
- **Proof:** Assume sqrt(2) is not irrational, therefore sqrt(2) is rational. Thus sqrt(2) = a/b (where a and b are in lowest terms)
 - $-2 = a^2 / b^2$
 - $2b^2 = a^2$; thus a^2 is even, therefore a is even, so a=2k
 - $2b^2 = (2k)^2 = 4k^2$
 - $b^2 = 2k^2$; thus b^2 is even, therefore b is even,
 - If a and b are even a/b is not a fraction in its lowest terms (this contradicts our earlier assumption)
 - By assuming sqrt(2) is rational, we conclude by contradiction that sqrt(2) is not rational, thus root(2) is irrational

- **Theorem:** sqrt(2) is irrational
- Proof: Assume sqrt(2) is not irrational, therefore sqrt(2) is rational. Thus sqrt(2) = a/b (where a and b are in lowest terms)
 - $-2 = a^2 / b^2$
 - $2b^2 = a^2$; thus a^2 is even, therefore a is even, so a=2k
 - $-2b^2 = (2k)^2 = 4k^2$
 - $b^2 = 2k^2$; thus b^2 is even, therefore b is even,
 - If a and b are even a/b is not a fraction in its lowest terms (this contradicts our earlier assumption)
 - By assuming sqrt(2) is rational, we conclude by contradiction that sqrt(2) is not rational, thus root(2) is irrational ■

- Theorem: sqrt(2) is irrational
- Proof: Assume sqrt(2) is not irrational, therefore sqrt(2) is rational. Thus sqrt(2) = a/b (where a and b are in lowest terms)
 - $-2 = a^2 / b^2$
 - $2b^2 = a^2$; thus a^2 is even, therefore a is even, so a=2k
 - $-2b^2 = (2k)^2 = 4k^2$
 - $b^2 = 2k^2$; thus b^2 is even, therefore b is even,
 - If a and b are even a/b is not a fraction in its lowest terms (this contradicts our earlier assumption)
 - By assuming sqrt(2) is rational, we conclude by contradiction that sqrt(2) is not rational, thus root(2) is irrational ■

- Theorem: sqrt(2) is irrational
- **Proof:** Assume sqrt(2) is not irrational, therefore sqrt(2) is rational. Thus sqrt(2) = a/b (where a and b are in lowest terms)
 - $-2 = a^2 / b^2$
 - $2b^2 = a^2$; thus a^2 is even, therefore a is even, so a=2k
 - $-2b^2 = (2k)^2 = 4k^2$
 - $b^2 = 2k^2$; thus b^2 is even, therefore b is even,
 - If a and b are even a/b is not a fraction in its lowest terms (this contradicts our earlier assumption)
 - By assuming sqrt(2) is rational, we conclude by contradiction that sqrt(2) is not rational, thus root(2) is irrational ■

- Theorem: sqrt(2) is irrational
- **Proof:** Assume sqrt(2) is not irrational, therefore sqrt(2) is rational. Thus sqrt(2) = a/b (where a and b are in lowest terms)
 - $-2 = a^2 / b^2$
 - $2b^2 = a^2$; thus a^2 is even, therefore a is even, so a=2k
 - $-2b^2 = (2k)^2 = 4k^2$
 - $-b^2 = 2k^2$; thus b² is even, therefore b is even,
 - If a and b are even a/b is not a fraction in its lowest terms (this contradicts our earlier assumption)
 - By assuming sqrt(2) is rational, we conclude by contradiction that sqrt(2) is not rational, thus root(2) is irrational ■

- **Theorem:** sqrt(2) is irrational
- **Proof:** Assume sqrt(2) is not irrational, therefore sqrt(2) is rational. Thus sqrt(2) = a/b (where a and b are in lowest terms)
 - $-2 = a^2 / b^2$
 - $2b^2 = a^2$; thus a^2 is even, therefore a is even, so a=2k
 - $-2b^2 = (2k)^2 = 4k^2$
 - $b^2 = 2k^2$; thus b^2 is even, therefore b is even,
 - If a and b are even a/b is not a fraction in its lowest terms (this contradicts our earlier assumption)
 - By assuming sqrt(2) is rational, we conclude by contradiction that sqrt(2) is not rational, thus root(2) is irrational ■

- Theorem: sqrt(2) is irrational
- **Proof:** Assume sqrt(2) is not irrational, therefore sqrt(2) is rational. Thus sqrt(2) = a/b (where a and b are in lowest terms)
 - $-2 = a^2 / b^2$
 - $2b^2 = a^2$; thus a^2 is even, therefore a is even, so a=2k
 - $-2b^2 = (2k)^2 = 4k^2$
 - $b^2 = 2k^2$; thus b^2 is even, therefore b is even,
 - If a and b are even a/b is not a fraction in its lowest terms (this contradicts our earlier assumption)
 - By assuming sqrt(2) is rational, we conclude by contradiction that sqrt(2) is not rational, thus root(2) is irrational ■

- **Theorem:** sqrt(2) is irrational
- **Proof:** Assume sqrt(2) is not irrational, therefore sqrt(2) is rational. Thus sqrt(2) = a/b (where a and b are in lowest terms)
 - $-2 = a^2 / b^2$
 - $2b^2 = a^2$; thus a^2 is even, therefore a is even, so a=2k
 - $-2b^2 = (2k)^2 = 4k^2$
 - $b^2 = 2k^2$; thus b^2 is even, therefore b is even,
 - If a and b are even a/b is not a fraction in its lowest terms (this contradicts our earlier assumption)
 - By assuming sqrt(2) is rational, we conclude by contradiction that sqrt(2) is not rational, thus root(2) is irrational