
Mathematics and Problem Solving
Lecture 8.4

Proof by Induction



  

● Proof by induction
– Prove something for an (infinite) set by 

1)proving it for one element, and

2)proving a rule that states “if it is true for the kth element, it 
is true for the k+1th element”



  

Chain example
● Claim: Given enough time a chain will become a constant 

temperature if there is a link that doesn’t change 
temperature.

● “Proof”: One link in the chain remains a constant 
temperature. Given enough time, any connected pair of 
chain links will become the same temperature.  Therefore, 
the whole chain will become a constant temperature. ∎
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● Base Case: One link in the chain remains a constant 
temperature.
– Claim is true for one element 

● Induction Step: Connected links become the same 
temperature
– If claim is true for an element k1 it is also true for another 

element k2



  

Domino Example
● Claim: If I knock over the first domino in a run, all 

of the dominoes fall over
● “Proof”: As I knock over the first domino in the 

run, it will fall. If a domino falls, the next domino 
will also fall. Therefore, all the dominoes will 
fall.  ∎
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● Base Case: First domino falls
– Claim is true for one element 

● Induction Step: If one domino falls, the next will 
fall
– If claim is true for an element k1 it is also true for 

another element k2



  

Sum of n natural numbers
● Theorem: S(n) = 1 + 2 + 3 + … + (n-1) + n = n(n+1)/2
● Proof: We will prove a base case where n=1 and an show that if the theorem is correct for S(k) 

then it is correct for S(k+1). 
– Base case: Assume n is 1, then 1(1+1)/2 = 2/2 = 1, which is the sum of all numbers up to 1.

– Inductive step: Assume the theorem is true for n = k.  The sum of the first k+1 numbers will be given by the 
formula:

● S(k) + k+1
● = k(k+1)/2 + k + 1
● = k(k+1)/2 + 2(k + 1)/2
● = (k(k+1) + 2(k + 1))/2
● = ((k+1)(k+2))/2
● Substituting m for k+1, giving m(m+1)/2 shows that this is equivalent to our theorem ∎ 
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